Étiquette : artificial intelligence (Page 15 of 26)

Obvious Art

“The members of Obvious don’t deny that they borrowed substantially from Barrat’s code, but until recently, they didn’t publicize that fact either. This has created unease for some members of the AI art community, which is open and collaborative and taking its first steps into mainstream attention. Seeing an AI portrait on sale at Christie’s is a milestone that elevates the entire community, but has this event been hijacked by outsiders?”

Source : How three French students used borrowed code to put the first AI portrait in Christie’s – The Verge

Google LYNA

“In both datasets, LYNA was able to correctly distinguish a slide with metastatic cancer from a slide without cancer 99% of the time. Further, LYNA was able to accurately pinpoint the location of both cancers and other suspicious regions within each slide, some of which were too small to be consistently detected by pathologists. As such, we reasoned that one potential benefit of LYNA could be to highlight these areas of concern for pathologists to review and determine the final diagnosis.”

Source : Google AI Blog: Applying Deep Learning to Metastatic Breast Cancer Detection

Microsoft - Zo

“California governor Jerry Brown signed regulations into law last Friday (Sept. 30) that should make it easier for Californians to know whether they’re speaking to a human or a bot. The new law goes into effect on July 1, 2019—Botageddon, as we’re going to call it—and could have far-reaching consequences for how automated systems communicate with people online. It will require companies to disclose whether they are using a bot to communicate with the public on the internet (something like “Hi, I’m a bot.”)”

Source : A new law means California’s bots have to disclose they’re not human — Quartz

Google Home

“Ryan Germick est responsable du développement de l’intelligence artificielle de l’enceinte Google Home. Pour lui conférer de l’empathie et de l’humour, il s’est entouré de comédiens, d’artistes en improvisation, de journalistes satiriques et de dialoguistes recrutés auprès du Studio Pixar. «Il faut tout un village pour élever une assistante virtuelle», explique-t-il sur le site de CNBC. Ainsi avec son équipe, ils ont réussi à créer une personnalité amicale, qu’ils décrivent comme une sorte de bibliothécaire excentrique et intello.”

Source : Sous le charme de l’assistante virtuelle de Google – Tendances Web

“With a unified model for a large number of languages, we run the risk of being mediocre for each language, which makes the problem challenging. Moreover, it’s difficult to get human-annotated data for many of the languages. Although SynthText has been helpful as a way to bootstrap training, it’s not yet a replacement for human-annotated data sets. We are therefore exploring ways to bridge the domain gap between our synthetic engine and real-world distribution of text on images”.

Source : Rosetta: Understanding text in images and videos with machine learning – Facebook Code

“DARPA envisions a future in which machines are more than just tools that execute human-programmed rules or generalize from human-curated data sets. Rather, the machines DARPA envisions will function more as colleagues than as tools. Towards this end, DARPA research and development in human-machine symbiosis sets a goal to partner with machines. Enabling computing systems in this manner is of critical importance because sensor, information, and communication systems generate data at rates beyond which humans can assimilate, understand, and act. Incorporating these technologies in military systems that collaborate with warfighters will facilitate better decisions in complex, time-critical, battlefield environments; enable a shared understanding of massive, incomplete, and contradictory information; and empower unmanned systems to perform critical missions safely and with high degrees of autonomy. DARPA is focusing its investments on a third wave of AI that brings forth machines that understand and reason in context”.

Source : AI Next Campaign

“Google et DeepMind ont convenu de bien délimiter le champ d’action des algorithmes d’optimisation afin d’éviter un incident d’exploitation. « Nos opérateurs sont toujours en contrôle et peuvent choisir de quitter le mode de contrôle de l’IA à tout moment. Dans ces scénarios, le système de contrôle passera du contrôle de l’intelligence artificielle aux règles et heuristiques sur site qui définissent aujourd’hui l’industrie de l’automatisation », précise la société. En suivant ce chemin, il s’avère que Google a réduit sa facture électrique : en moyenne, l’entreprise dit avoir obtenu des économies d’énergie de 30 % alors que le mécanisme n’est déployé que depuis quelques mois”.

Source : IA : Google confie les clés du refroidissement de ses data centers à ses algorithmes – Tech – Numerama

“We don’t just want this to be an academically interesting result – we want it to be used in real treatment. So our paper also takes on one of the key barriers for AI in clinical practice: the “black box” problem. For most AI systems, it’s very hard to understand exactly why they make a recommendation. That’s a huge issue for clinicians and patients who need to understand the system’s reasoning, not just its output – the why as well as the what.
Our system takes a novel approach to this problem, combining two different neural networks with an easily interpretable representation between them. The first neural network, known as the segmentation network, analyses the OCT scan to provide a map of the different types of eye tissue and the features of disease it sees, such as haemorrhages, lesions, irregular fluid or other symptoms of eye disease. This map allows eyecare professionals to gain insight into the system’s “thinking.” The second network, known as the classification network, analyses this map to present clinicians with diagnoses and a referral recommendation. Crucially, the network expresses this recommendation as a percentage, allowing clinicians to assess the system’s confidence in its analysis”.

Source : A major milestone for the treatment of eye disease | DeepMind

« Older posts Newer posts »

© 2025 no-Flux

Theme by Anders NorenUp ↑